logo

technische_universitaet_dresden.pngInstitut für Nachrichtentechnik der TU Dresden stellt ein neues Breitbandnetzkonzept vor

Technologien zur drahtlosen Datenübertragung, zum Beispiel in kleineren Funknetzen (WLAN), Bluetooth bis hin zur drahtlosen Computermaus werden von den Konsumenten sehr gut angenommen, wie der Erfolg der letzten Jahre zeigt.

Auch die drahtlose Nutzung von Fernsehen, DVD-Filmen oder Computerspielen gewinnt zunehmend an Interesse. Der Wandel zu hochauflösenden Inhalten bei digitalen Bildern bewirkt dabei eine Nachfrage nach einer schnellen digitalen Übertragung in hoher Qualität zwischen hochauflösenden Bildschirmen, z.B. HDTV, HD Projektoren und anderen elektrischen Geräten, die hochauflösende Inhalte erzeugen, wie HD-DVDs, Blu-ray-Discs, Spielekonsolen etc.
Für die Verbindung all dieser Geräte wird sich, so Prof. Christian Schäffer vom Institut für Nachrichtentechnik der TU Dresden, das digitale Interface HDMI (high definition multimedia interface) mit einer Bandbreite von bis zu drei Gbit/s durchsetzen. Um nun den Kabelsalat, der zur Verbindung der erwähnten Geräte notwendig ist, zu vermeiden, wäre eine einfach zu nutzende drahtlose Technologie wünschenswert.

Die neuesten drahtlosen Systeme nach den bisher existierenden Standards sind noch nicht in der Lage, die hohen Videoraten zu übertragen, die für eine qualitativ hochwertige Verbindung notwendig wären. An der Professur für Hochfrequenztechnik und Photonik wurde unter der Leitung von Prof. Schäffer nun ein pico-zellulares System entwickelt, das pro Funkzelle Datenraten von 2,5 bis zu 10 Gbit/s bereitstellen kann. Eine pico-Funkzelle hat einen Durchmesser von wenigen Metern. Derartige Bandbereiten der Basisbandsignale erfordern Trägerfrequenzen im Mikrowellenbereich. "Unseres Wissens handelt es sich hierbei um das erste System in Europa, das eine drahtlose Übertragung von 10 Gbit/s im Mikrowellenbereich erlaubt", so Prof. Schäffer.

Da das Mikrowellensignal mittels einer optischen Überlagerung erzeugt wird, kann das Übertragungssystem im Frequenzbereich 26-150 GHz, aber auch bei viel höheren Frequenzen im Terahertzbereich realisiert werden. Durch die hohe Bandbreite der zum Transport und zur Erzeugung verwendeten photonischen Technologien liegen die großen technischen Herausforderungen im Bereich der Elektronik, des Funkkanals und insbesondere der Antennen.
Die hohe Bandbreite pro Funkzelle erlaubt neben der Übertragung der HDMI Signale beispielsweise auch zeitgleich einen breitbandigen Internetzugang für 3D-Spiele. Im kommerziellen Bereich erlaubt ein derartiges System die drahtlose Übertragung von 10 Gbit/s Ethernet, die Standardtechnologie zur Verbindung von Rechnern.

Kim-Astrid Magister, Pressestelle
Technische Universität Dresden

© 2024 Funkzentrum In Media e. V.
Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.