Änderungen der kosmischen Strahlung, wie sie durch Schwankungen der Sonnenaktivität auf der Zeitskala von einigen Tagen verursacht werden, haben keine Veränderungen der globalen oder regionalen Wolkenbedeckung zur Folge.
Das zeigen detaillierte Analysen von Wissenschaftlern einer schweizerisch-deutschen Kollaboration. Somit ist es sehr unwahrscheinlich, dass kosmische Strahlung das Klima beeinflusst. (Geophysical Research Letters 37, L03802, 03.02.2010)
Wolken spielen für das Klima der Erde eine doppelte Rolle. Einerseits reflektieren sie auf den Planeten einfallendes Sonnenlicht zurück in den Weltraum, andererseits behindern Wolken die Wärme-Abstrahlung von der Erdoberfläche in den Weltraum. Je nach ihrer Höhe und Beschaffenheit wirken Wolken also entweder wärmend oder kühlend. Nach heutiger Auffassung dominiert der kühlende Einfluss der Wolken.
Vor einigen Jahren haben dänische Wissenschaftler die Hypothese aufgestellt, dass die galaktische kosmische Strahlung die globale Wolkenbedeckung beeinflusst. Dies leiteten sie aus der Auswertung von Strahlungs- und Wolkendaten über einen Sonnenzyklus ab. Während eines 11-jährigen Sonnenzyklus nimmt die Aktivität der Sonne und damit die Zahl der Sonnenflecken zu und wieder ab, wodurch die Stärke der im Sonnenwind eingefrorenen und die kosmische Strahlung ablenkenden Magnetfelder entsprechend schwankt. Das hat zur Folge, dass bei aktiver Sonne weniger kosmische Strahlung die Erde erreicht. Da insgesamt die Sonnenaktivität im vergangenen Jahrhundert zugenommen hat, vermuteten die dänischen Autoren, dass die Wolkenbedeckung und somit die Wolkenkühlung abgenommen haben. Sie spekulierten, dass die beobachtete globale Erwärmung darauf zurückzuführen sei. Dies löste eine kontroverse Debatte aus.
Für einen unabhängigen Test dieser Hypothese haben Frank Arnold vom Max-Planck-Institut für Kernphysik und seine Schweizer Kollegen von der Universität Bern und der Eawag Dübendorf nun sogenannte Forbush-Ereignisse analysiert. Dabei verursachen sporadisch auftretende Sonneneruptionen einen plötzlichen Rückgang der in die Erdatmosphäre eindringenden kosmischen Strahlung, der innerhalb weniger Tage wieder abklingt. Die Abnahme ist ähnlich stark ausgeprägt wie im Maximum des Sonnenzyklus.
Wie können kosmische Strahlen die Wolkenbildung beeinflussen? Wolken brauchen zu ihrer Entstehung Kondensationskeime, die dann zu Tröpfchen anwachsen. Solche Kondensationskeime sind Aerosolteilchen, die im Prinzip auch aus Ionen (elektrisch geladenen Atomen oder Molekülen) entstehen können. Die Ionen werden durch die kosmische Strahlung aus neutralen Luftmolekülen gebildet.
Die Gruppe um Frank Arnold hat in Laborexperimenten die Bildung von Aerosolteilchen aus Ionen untersucht. Hierbei zeigte sich, dass die Ionen hauptsächlich durch Anlagerung von gasförmiger Schwefelsäure wachsen. Nach einigen Tagen sind die Teilchen so groß, dass Wasserdampf darauf kondensieren kann. Schwefelsäure entsteht in der Atmosphäre aus Schwefeldioxid, das hauptsächlich bei der Verbrennung fossiler Brennstoffe sowie bei Vulkanausbrüchen in die Luft geblasen wird. Allerdings wird in der Atmosphäre nur selten genügend Schwefelsäure gebildet, um die winzigen Aerosolteilchen bis zur Größe von Wolkenkondensationskernen anwachsen zu lassen. Das begrenzte Angebot an Schwefeldioxid ist somit ein Flaschenhals für die Wolkenbildung durch kosmische Strahlung.
So lag es nahe, aus Messdaten der galaktischen kosmischen Strahlung die Ionenkonzentration in der Atmosphäre zu berechnen und mit Satellitendaten der Wolkenbedeckung zu vergleichen. Als Ergebnis der Analyse von 6 markanten Forbush-Ereignissen steht fest, dass sich Ionenkonzentration und Wolkenbedeckung völlig unkorreliert zeitlich ändern. In keinem Wolkenstockwerk fanden die Forscher der schweizerisch-deutschen Kollaboration globale oder regionale Effekte, weder für ein einzelnes Ereignis noch gemittelt über alle 6 Ereignisse.
Analysiert haben die Wissenschaftler nur solche Forbush-Ereignisse, die nicht durch andere Effekte überlagert waren. Sie berechneten für alle 6 Ereignisse über je 20 Tage alle 3 Stunden die Ionenkonzentration in einem 5°×5°-Gitter über den Globus und die gesamte Troposphäre. Diese verglichen sie dann mit ebenfalls 3-stündlich vorliegenden Satellitendaten zur Wolkenbedeckung in 3 Höhenstufen. Sie betrachteten nur relative Werte, so dass eventuelle systematische Messfehler keine Rolle spielen. Die Methode ist empfindlich genug, um Effekte in der von den dänischen Wissenschaftlern postulierten Größenordnung zu entdecken.
Originalveröffentlichung: Sudden cosmic ray decreases: No change of global cloud cover.
J. Calogovic, C. Albert, F. Arnold, J. Beer, L. Desorgher, E.O. Flückiger;
Geophysical Research Letters, Vol. 37, L03802, doi:10.1029/2009GL041327, 2010
Dr. Bernold Feuerstein, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik